Движение тела брошенного под углом к горизонту — Репетитор по физике (Новосибирск)

Движение тела, брошенного под углом к горизонту.  Полный разбор движения. Вывод формул

Это движение представляет собой совокупность двух видов движения:

  • равномерного движения по оси X (горизонтально): скорость v=const, т.к. ускорение a=0
  • равнопеременного по оси Y (вертикально): скорость v=v0+at, т.к. ускорение а=-g

Как же найти скорость?

Сначала найдем скорости по X и по Y отдельно.

  • Чтобы найти скорость по оси X, которая будет постоянная на всем пути, определим проекцию V0 на ось X:

Проекция V0 на ось Х – это прилежащий к углу α катит:

V0x=V0cosα

Т.к. Vx – постоянна, поэтому:

Vx= V0x=V0cosα

  • Чтобы найти скорость по оси Y, которая будет меняться, определим проекцию V0 на ось Y, это будет начальная скорость по вертикальной оси:

Проекция V0 на ось Y – это противолежащий к углу α катит:

V=V0sinα

Так как Vy, как мы уже говорили, равнопеременная скорость, то:

Vу= V+at

Учитывая, что ускорение направлено против вертикальной оси (а=-g), и подставляя V0y получим:

Vу= V0sinα -gt

Итого:

Зная проекции скорости, можем ли мы восстановить саму скорость? (зная катеты треугольника можем ли мы найти гипотенузу?)

Конечно! Теорема Пифагора.

V2=Vx2+ Vy2

 

Скорость – дело понятное, как же быть с пройденным путем? Очень просто.

Так как мы сказали, что имеем дело с двумя видами движения в одном, а значит и пути у каждого из видов движения будут разные:

  • Горизонтального движение по оси Х равномерное, путь при равномерном движении:

S=V t

Обозначим путь по Х за Х и подставим нашу скорость вместо V, получим:

Х= Vxt= V0cosα t

  • Вертикальное движение по оси Y равнопеременное, путь при равнопеременном движении:

Аналогично, обозначим путь по Y за Y, подставим нашу скорость вместо V0 и ускорение а=-g получим:

В итоге:

ВАЖНО! Часто в задачах встречается ситуация, когда нужно найти высоту подъема или дальность полета.

Высота подъема находится очень просто. Все что нужно для решения большинства задач находится в получившихся уравнениях:

  • для скорости

  • для координат

 

Верхняя точка отличается тем, что в ней происходит изгиб. Происходит этот изгиб из-за ускорения свободного падения. Полная скорость, т.к. она направлена по касательной, становится направленной горизонтально, а значит проекция полной скорости по Y равна нулю:

 

Vу= V0sinα –gt=0

 

Запишем концовку предыдущего уравнения и выразим время — время в этой формуле соответствует той же самой верхней точке, назовем его – время подъема (tп).

 

V0sinα –g tп =0

Получаем:

Высота подъема – это координата Y, поэтому вставляем tп в уравнение для Y и получаем искомую высоту собственной персоной:

Преобразуем и получим высоту подъема:

 

Дальность полета – это координата Х в точке падения, поэтому время уже накопится в два раза больше:

Аналогично подставим время в формулу для координаты Х:

 

Применим формулу из триганометрии: 2sin cos = sin, применим и получим: